Exploring the Relationship between Speech and Skin Conductance for Real-Time Arousal Monitoring

Sylmarie Dávila-Montero

Sina Parsnejad

Andrew J. Mason

Monitoring human emotions through wearable systems has become an important area of research. Electrodermal activity (EDA) has proven to be a good indicator of emotional arousal, and numerous works have focused on using EDA data to predict emotional states. However, to successfully integrate EDA data into real-time wearable emotion recognition systems, several challenges of practical real-life scenarios, need to be addressed. This paper explores the relationship between speech signals and EDA reactions and analyzes a new approach for classification of skin conductance reactions elicited by emotional arousal using speech signals as a triggering event. Results show an average improvement in skin conductance reaction classification accuracy of at least 5.6% when using speech-triggered reactions compared with traditional methods. The use of speech as a triggering event could help improve real-time emotion recognition algorithms implemented within wearable systems.

EDA signals were captured at a sampling rate of 128 Hz using the Shimmer GSR+Unit1, which provides connections and pre-amplification for one channel of EDA data acquisition. This sensor monitors EDA between two electrodes attached to the middle phalanx of the index and middle fingers on the non-dominant hand. Data collected using this device was transmitted in real time via Bluetooth connection to a laptop (Intel i7, 1.80 GHz) assisting in the study.

In addition, audio signals were captured at a sampling rate of 44.1 kHz using the integrated microphone (Realtek (R) Audio) of the laptop in use. Data recording and synchronization were managed by the iMotions software platform.

 

This publication uses Facial Expression Analysis and GSR which is fully integrated into iMotions Lab

Learn more